On computing the canonical form for a binary form of odd degree

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank/Activity: A Canonical Form for Binary Resolution

The rank/activity restriction on binary resolution is introduced. It accepts only a single derivation tree from a large equivalence class of such trees. The equivalence classes capture all trees that are the same size and differ only by reordering the resolution steps. A proof procedure that combines this restriction with the authors’ minimal restriction of binary resolution computes each minim...

متن کامل

Computing the Combinatorial Canonical Form of a Layered Mixed Matrix

This paper presents an improved algorithm for computing the Combinatorial Canonical Form (CCF) of a layered mixed matrix A = Q T , which consists of a numerical matrix Q and a generic matrix T . The CCF is the (combinatorially unique) nest block-triangular form obtained by the row operations on the Q-part, followed by permutations of rows and columns of the whole matrix. The main ingredient of ...

متن کامل

A Note on the Jordan Canonical Form

A proof of the Jordan canonical form, suitable for a first course in linear algebra, is given. The proof includes the uniqueness of the number and sizes of the Jordan blocks. The value of the customary procedure for finding the block generators is also questioned. 2000 MSC: 15A21. The Jordan form of linear transformations is an exceeding useful result in all theoretical considerations regarding...

متن کامل

On the Rank of a Binary Form

We describe in the space of binary forms of degree d the strata of forms having constant rank. We also give a simple algorithm to determine the rank of a given form.

متن کامل

The Jordan Canonical Form

Let β1, . . . , βn be linearly independent vectors in a vector space. For all j with 0 ≤ j ≤ n and all vectors α1, . . . , αk, if β1, . . . , βn are in the span of β1, . . . , βj, α1, . . . , αk, then j + k ≥ n. The proof of the claim is by induction on k. For k = 0, the claim is obvious since β1, . . . , βn are linearly independent. Suppose the claim is true for k−1, and suppose that β1, . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1989

ISSN: 0747-7171

DOI: 10.1016/s0747-7171(89)80034-3